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1 Szemerédis Regularity Lemma and the Removal Lemma

1.1 Szemerédis regularity lemma

The idea behind Szemerédi’s regularity lemma is that we can split a large graph into a
number of separate pieces, where vertices in each piece act approximately the same in
terms of connecting to other pieces.

Let e(X,Y ) denote the number of edges between the sets of vertices X and Y .

Lemma 1.1 (Szemerédi’s regularity lemma, 1978). For every εR > 0 and k0 ∈ N, there
exists a K0 such that for every graph G, we can find a partition V (G) = V0 ⊔ V1 ⊔ · · · ⊔ Vk

with k0 ≤ k ≤ K0 satisfying the following properties:

1. |V1| = · · · = |Vk|,
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2. |V0| ≤ εR|V (G)|,

3. All pairs 1 ≤ i < j ≤ k except ≤ εRk
2 pairs are such that for all subsets A ⊆ Vi,

B ⊆ Vj with |A| ≥ εR|Vi| and |B| ≥ εR|Vj |,∣∣∣∣e(A,B)

|A||B|
− e(Vi, Vj)

|Vi||Vj |

∣∣∣∣ ≤ εR.

Here, Vi, Vj are said to be εR-regular.

Example 1.1. Consider the following bipartite graph where the vertices on the left are
connected to all vertices at the same level or below.

If we split up the vertices as above, then the edge densities between the different pieces of
the graph are regular within each pair of pieces.

1.2 The removal lemma

We want to derive the following statement, which is morally equivalent to counting the
number of subgraphs with certain properties. The regularity lemma gives us control of
various things, one of which is the density of subgraphs.

Lemma 1.2 (Removal lemma). For every ε > 0 and graph H, there exists a δ > 0 such
that every n-vertex graph G satisfies one of the following:

1. G has at least δn|V (H)| copies of H.

2. There exists a small set of edges F ⊆ E(G) with |F | ≤ εn2 such that G\F is H-free.
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Proof. We will give the proof for H = K3; the general case is left as an exercise (try proving
it for H = Kn first). We want to apply the regularity lemma, so we choose εR = ε

100 and
k0 = ⌈100ε ⌉. Szemerédi’s regularity lemma spits out some K0, and based on this value, we
will later specify δ as a function of K0 and εR. Given an n-vertex graph G, the lemma gives
us the partition V0 ⊔ V1 ⊔ · · · ⊔ Vk with regular pairs (Vi, Vj). We then define an auxilliary

graph with the Vi as the vertices, connecting Vi, Vj by an edge if
e(Vi,Vj)
|Vi||Vj | ≥ ε

10 .

Case 1: If the auxiliary graph does not contains any copies of K3, then let F contain
the following edges:

• edges between pairs of parts that are not εR-regular

≤ εRk
2|V1|2 ≤ εRk

2
(n
k

)2
= εRn

2 =
εn2

100
many of these

• edges between pairs Vi, Vj that have
e(Vi,Vj)
|Vi||Vj | < ε

10

≤
(
k

2

)
ε

10
|V1|2 ≤ k2

ε

10

(n
k

)2
=

εn2

10
many of these

• edges within the same part Vi

≤ k

(
|V1|
2

)
≤ k

(n
k

)2
≤ n2

k0
≤ εn2

100
many of these

• edges incident to a vertex in V0

≤ |V0|n ≤ εRn
2 ≤ εn2

100
many of these
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If we remove all these edges and there are no triangles in the auxiliary graph, then there
can be no triangles left in the graph.

Case 2: If the auxiliary graph does contain a copy of K3, then there exists Va, Vb, Vc

with a < b < c such that every pair of them is εR-regular and has density ≥ ε
10 . The

number of vertices is a constant fraction of n:

|Va| = |Vb| = |Vc| ≥ (1− εR)
n

K0
≥ n

2K0
.

We claim that at least (1− εk)|Va| vertices of Va have at least ε
50 |Vb| neighbors in Vb.

Suppose not. Then let A = {w ∈ Va with ≤ ε
50 |Vb| neighbors in Vb} and B = Vb. Then

e(A,B) ≤ ε

50
|A||B|,

which gives
e(A,B)

|A||B|
≤ ε

50
.

On the other hand, we already know that

e(Va, Vb)

|Va||Vb|
≥ ε

10
,

which gives a contradiction.
Similarly, we also have at least (1− εR)|Va| vertices of Va with at least ε

50 |Vc| neighbors
in Vc. Putting these two statements together, we have at least (1− 2εk)|Va| vertices of Va

with at least ε
50 |Vb| neighbors in Vb and

ε
50 |Vc| neighbors in Vc.
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To make a triangle, the number of choices for a vertex x in Va is ≥ (1− 2εR)|Va|. Let
Xb be the neighbors of x in Vb, and let Xc be the neighbors of x in Vc.

The number of edges between Xb and Xc is ≥ ( ε
10 − εR)|Xb||Xc|.

# triangles ≥ (1− 2εR)|Va|
( ε

10
− εR

)
|Xb||Xc|

≥ 1

2

n

2K0

ε

20

(
ε

50

n

K0

)2

=
ε3

200000K3
0

n3.

so we get the result with δ = ε3

200000K3
0
.

Remark 1.1. The same proof gives that

# triangles ≈ e(Va, Vb)

|Va||Vb|
e(Va, Vc)

|Va||Vc|
e(Vb, Vc)

|Vb||Vc|
|Va||Vb||Vc|.

This is what we mean by the removal lemma being morally equivalent to counting sub-
graphs.

Next time, we with prove Roth’s theorem.
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